Author:
Samir Mohamed Mohamed Soliman Ehab
Abstract
Purpose
In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.
Design/methodology/approach
The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.
Findings
Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.
Originality/value
This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.
Reference31 articles.
1. Finite element analysis of lifting lugs under actual factory conditions;Lecture Notes in Mechanical Engineering,2019
2. Stress analysis of thin-walled laminated composite beams;ARPN Journal of Engineering and Applied Sciences,2015
3. Design consideration for the erection of heavy wall and large diameter pressure vessels;Procedia Engineering,2015
4. The design of lifting attachments for the erection of large diameter and heavy wall pressure vessels;International Journal of Pressure Vessels and Piping,2016
5. Nonintrusive parametric NVH study of a vehicle body structure;Mechanics Based Design of Structures and Machines,2022