Human-following task without a prior map

Author:

Zhou Zhiqiang,Fu Yong,Wu Wei

Abstract

Purpose The human-following task is a fundamental function in human–robot collaboration. It requires a robot to recognize and locate a target person, plan a path and avoid obstacles. To enhance the applicability of the human-following task in various scenarios, it should not rely on a prior map. This paper aims to introduce a human-following method that meets these requirements. Design/methodology/approach For the identification and localization of the target person (ILTP), this paper proposes an approach that integrates data from a camera, a light detection and ranging (LiDAR) and a ultra-wideband (UWB) anchor. For path planning and obstacle avoidance, a modified timed-elastic-bands (TEB) algorithm is introduced. Findings Compared to the UWB-only method, where only UWB is used to locate the target person, the proposed ILTP method in this paper reduces the localization error by 41.82%. Experimental results demonstrate the effectiveness of the ILTP and the modified TEB method under various challenging conditions. Such as crowded environments, multiple obstacles, the target person being occluded and the target person moving out of the robot’s field of view. The complete experimental videos are available for viewing on https://youtu.be/ZKbrNE1sePM. Originality/value This paper offers a novel solution for human-following tasks. The proposed ILTP method can recognize the target person among multiple individuals, determine whether the target person is lost and publish the target person’s position at a frequency of 20 Hz. The modified TEB algorithm does not rely on a prior map. It can plan paths and avoid obstacles effectively.

Publisher

Emerald

Reference38 articles.

1. Human tracking and following in dynamic environment for service robots”,2017

2. Deep-learning-based indoor human following of mobile robot using color feature;Sensors,2020

3. Multisensor-based human detection and tracking for mobile service robots;IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),2008

4. The vector field histogram-fast obstacle avoidance for mobile robots;IEEE Transactions on Robotics and Automation,1991

5. A cost-effective person-following system for assistive unmanned vehicles with deep learning at the edge;Machines,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3