A new approach for hybrid (PID + MRAC) adaptive controller applied to two-axes McKibben muscle manipulator: a mechanism for human-robot collaboration

Author:

Bomfim Marcelo Henrique Souza,Lima II Eduardo José,Monteiro Neemias Silva,Sena Vinícius Avelino

Abstract

Purpose This paper aims to present a new approach, called hybrid model reference adaptive controller or H-MRAC, for the hybrid controller (proportional-integral-derivative [PID + MRAC]) that will be used to control the position of a pneumatic manipulator. Design/methodology/approach It was developed a McKibben muscle using nautical mesh, latex and high-density polyethene connectors and it was constructed an elbow manipulator with two degrees of freedom, driven by these muscles. Then it was presented the H-MRAC control law based on the phenomenological characteristics of the plant, aiming at fast response and low damping. Lyapunov's theory was used as the project methodology, which ensures asymptotic stability for the control system. Findings It was developed a precise control system for a pneumatic manipulator and the results were compared to previous research. Research limitations/implications In collaborative robotics, human and machine occupy the same workspace. This research promotes the development of safer and more complacent mechatronic systems in the event of collisions. Practical implications As a practical implication, the research allows the substitution of electric motors by McKibben muscles in industrial robots with high accuracy. Social implications The pneumatic manipulator will make the human-robot physical interaction safer as it can prevent catastrophic collisions causing victims or equipment breakdown. Originality/value When compared to results in the literature, the present research showed a 37.51% and 36.74% lower global error in position tracking than MRAC and Adaptive proportional-integral-derivative (A-PID), respectively, validating its effectiveness.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3