Quasiperiodic graph model of rubber elasticity in double-network gels undergoing mechanochemical coupling

Author:

Zhang Aying,Xing Ziyu,Lu Haibao

Abstract

Purpose The purpose of this paper is to study the mechanochemical effect and self-growth mechanism of double-network (DN) gel and to provide a quasiperiodic model for rubber elasticity. Design/methodology/approach The chemical reaction kinetics is used to identify the mechanochemical transition probability of host brittle network and to explore the mechanical behavior of endosymbiont ductile network. A quasiperiodic model is proposed to characterize the cooperative coupling of host–endosymbiont networks using the Penrose tiling of a 2 × 2 matrix. Moreover, a free-energy model is formulated to explore the constitutive stress–strain relationship for the DN gel based on the rubber elasticity theory and Gent model. Findings In this study, a quasiperiodic graph model has been developed to describe the cooperative interaction between brittle and ductile networks, which undergo the mechanochemical coupling and mechanical stretching behaviors, respectively. The quasiperiodic Penrose tiling determines the mechanochemistry and self-growth effect of DNs. Originality/value It is expected to formulate a quasiperiodic graph model of host–guest interaction between two networks to explore the working principle of mechanical and self-growing behavior in DN hydrogels, undergoing complex mechanochemical effect. The effectiveness of the proposed model is verified using both finite element analysis and experimental results of DN gels reported in literature.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference39 articles.

1. Mechanochemistry: the mechanical activation of covalent bonds;Cheminform,2005

2. Suppressing cascades of load in interdependent networks;Proceedings of the National Academy of Sciences,2012

3. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks;Proceedings of the National Academy of Sciences,2018

4. Toughening elastomers with sacrificial bonds and watching them break;Science,2014

5. Classical dimers on Penrose tilings;Physical Review X,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3