A multi-agent system for distributed smartphone sensing cycling in smart cities

Author:

Anagnostopoulos Theodoros,Luo Chu,Ramson Jino,Ntalianis Klimis,Kostakos Vassilis,Skourlas Christos

Abstract

Purpose The purpose of this paper is to propose a distributed smartphone sensing-enabled system, which assumes an intelligent transport signaling (ITS) infrastructure that operates traffic lights in a smart city (SC). The system is able to handle priorities between groups of cyclists (crowd-cycling) and traffic when approaching traffic lights at road junctions. Design/methodology/approach The system takes into consideration normal probability density function (PDF) and analytics computed for a certain group of cyclists (i.e. crowd-cycling). An inference model is built based on real-time spatiotemporal data of the cyclists. As the system is highly distributed – both physically (i.e. location of the cyclists) and logically (i.e. different threads), the problem is treated under the umbrella of multi-agent systems (MAS) modeling. The proposed model is experimentally evaluated by incorporating a real GPS trace data set from the SC of Melbourne, Australia. The MAS model is applied to the data set according to the quantitative and qualitative criteria adopted. Cyclists’ satisfaction (CS) is defined as a function, which measures the satisfaction of the cyclists. This is the case where the cyclists wait the least amount of time at traffic lights and move as fast as they can toward their destination. ITS system satisfaction (SS) is defined as a function that measures the satisfaction of the ITS system. This is the case where the system serves the maximum number of cyclists with the fewest transitions between the lights. Smart city satisfaction (SCS) is defined as a function that measures the overall satisfaction of the cyclists and the ITS system in the SC based on CS and SS. SCS defines three SC policies (SCP), namely, CS is maximum and SS is minimum then the SC is cyclist-friendly (SCP1), CS is average and SS is average then the SC is equally cyclist and ITS system friendly (SCP2) and CS is minimum and SS is maximum then the SC is ITS system friendly (SCP3). Findings Results are promising toward the integration of the proposed system with contemporary SCs, as the stakeholders are able to choose between the proposed SCPs according to the SC infrastructure. More specifically, cyclist-friendly SCs can adopt SCP1, SCs that treat cyclists and ITS equally can adopt SCP2 and ITS friendly SCs can adopt SCP3. Originality/value The proposed approach uses internet connectivity available in modern smartphones, which provide users control over the data they provide to us, to obviate the installation of additional sensing infrastructure. It extends related study by assuming an ITS system, which turns traffic lights green by considering the normal PDF and the analytics computed for a certain group of cyclists. The inference model is built based on the real-time spatiotemporal data of the cyclists. As the system is highly distributed – both physically (i.e. location of the cyclists) and logically (i.e. different threads), the system is treated under the umbrella of MAS. MAS has been used in the literature to model complex systems by incorporating intelligent agents. In this study, the authors treat agents as proxy threads running in the cloud, as they require high computation power not available to smartphones.

Publisher

Emerald

Subject

General Computer Science,Information Systems

Reference32 articles.

1. Cyclist-aware traffic lights through distributed smartphone sensing;Pervasive and Mobile Computing,2016

2. ToA estimation system for efficient cycling in smart cities,2017

3. Characterizing mobility and network usage in a corporate wireless local-area network,2003

4. B-ICYCLE (2015), available at: http://b-icycle.com/ (accessed 23 July 2019).

5. BIKE-COMPUTER (2017), available at: https://play.google.com/store/apps/details?id=pl.com.digita.BikeComputer (accessed 23 July 2019).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Next Generation of Multi-Agent Driven Smart City Applications and Research Paradigms;IEEE Open Journal of the Communications Society;2023

2. Multi-Agent and Fuzzy Inference-Based Framework for Traffic Light Optimization;International Journal of Interactive Multimedia and Artificial Intelligence;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3