Seeker optimization algorithm for optimal control of manipulator

Author:

Chen Chunchao,Li Jinsong,Luo Jun,Xie Shaorong,Li Hengyu

Abstract

Purpose This paper aims to improve the adaptability and control performance of the controller, a proposed seeker optimization algorithm (SOA) is introduced to optimize the controller parameters of a robot manipulator. Design/methodology/approach In this paper, a traditional proportional integral derivative (PID) controller and a fuzzy logic controller are integrated to form a fuzzy PID (FPID) controller. The SOA, as a novel algorithm, is used for optimizing the controller parameters offline. There is a performance comparison in terms of FPID optimization about the SOA, the genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). The DC motor model and the experimental platform are used to test the performance of the optimized controller. Findings Compared with GA, PSO and ACO, this novel optimization algorithm can enhance the control accuracy of the system. The optimized parameters ensure a system with faster response speed and better robustness. Originality/value A simplified FPID controller structure is constructed and a novel SOA method for FPID controller is presented. In this paper, the SOA is applied on the controller of 5-DOF manipulator, and the validation of controllers is tested by experiments.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference21 articles.

1. Seeker optimization algorithm for load-tracking performance of an autonomous power system;International Journal of Electrical Power & Energy Systems,2012

2. A fuzzy logic controller tuned with pso for 2 dof robot trajectory control;Expert Systems with Applications,2011

3. A pso-based adaptive fuzzy pid-controllers;Simulation Modelling Practice & Theory,2012

4. Seeker optimization algorithm for tuning the structure and parameters of neural networks;Neurocomputing,2011

5. Seeker optimization algorithm,2006

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3