Autonomous exploration through deep reinforcement learning

Author:

Yan Xiangda,Huang Jie,He Keyan,Hong Huajie,Xu Dasheng

Abstract

Purpose Robots equipped with LiDAR sensors can continuously perform efficient actions for mapping tasks to gradually build maps. However, with the complexity and scale of the environment increasing, the computation cost is extremely steep. This study aims to propose a hybrid autonomous exploration method that makes full use of LiDAR data, shortens the computation time in the decision-making process and improves efficiency. The experiment proves that this method is feasible. Design/methodology/approach This study improves the mapping update module and proposes a full-mapping approach that fully exploits the LiDAR data. Under the same hardware configuration conditions, the scope of the mapping is expanded, and the information obtained is increased. In addition, a decision-making module based on reinforcement learning method is proposed, which can select the optimal or near-optimal perceptual action by the learned policy. The decision-making module can shorten the computation time of the decision-making process and improve the efficiency of decision-making. Findings The result shows that the hybrid autonomous exploration method offers good performance, which combines the learn-based policy with traditional frontier-based policy. Originality/value This study proposes a hybrid autonomous exploration method, which combines the learn-based policy with traditional frontier-based policy. Extensive experiment including real robots is conducted to evaluate the performance of the approach and proves that this method is feasible.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robot Autonomous Exploration Mapping Based on FD-RRT;2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3