Abstract
Purpose
The purpose of this paper is to study the homoclinic breather waves, rogue waves and multi-soliton waves of the (2 + 1)-dimensional Mel’nikov equation, which describes an interaction of long waves with short wave packets.
Design/methodology/approach
The author applies the Hirota’s bilinear method, extended homoclinic test approach and parameter limit method to construct the homoclinic breather waves and rogue waves of the (2 + 1)-dimensional Mel’nikov equation. Moreover, multi-soliton waves are constructed by using the three-wave method.
Findings
The results imply that the (2 + 1)-dimensional Mel’nikov equation has breather waves, rogue waves and multi-soliton waves. Moreover, the dynamic properties of such solutions are displayed vividly by figures.
Research limitations/implications
This paper presents efficient methods to find breather waves, rogue waves and multi-soliton waves for nonlinear evolution equations.
Originality/value
The outcome suggests that the extreme behavior of the homoclinic breather waves yields the rogue waves. Moreover, the multi-soliton waves are constructed, including the new breather two-solitary and two-soliton solutions. Meanwhile, the dynamics of these solutions will greatly enrich the diversity of the dynamics of the (2 + 1)-dimensional Mel’nikov equation.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference53 articles.
1. Rogue waves and rational solutions of the nonlinear Schrödinger equation;Physical Review E,2009
2. Waves that appear from nowhere and disappear without a trace;Physics Letters A,2009
3. Recent progress in investigating optical rogue waves;Journal of Optics,2013
4. Vector rogue waves in binary mixtures of Bose-Einstein condensates;The European Physical Journal Special Topics,2010
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献