Effect of magnetic field-dependent thermal conductivity on natural convection of magnetic nanofluid inside a square enclosure

Author:

Hajiyan Mohammadhossein,Mahmud Shohel,Biglarbegian Mohammad,Abdullah Hussein A.,Chamkha A.

Abstract

Purpose The purpose of this paper is to investigate the convective heat transfer of magnetic nanofluid (MNF) inside a square enclosure under uniform magnetic fields considering nonlinearity of magnetic field-dependent thermal conductivity. Design/methodology/approach The properties of the MNF (Fe3O4+kerosene) were described by polynomial functions of magnetic field-dependent thermal conductivity. The effect of the transverse magnetic field (0 < H < 105), Hartmann Number (0 < Ha < 60), Rayleigh number (10 <Ra <105) and the solid volume fraction (0 < φ < 4.7%) on the heat transfer performance inside the enclosed space was examined. Continuity, momentum and energy equations were solved using the finite element method. Findings The results show that the Nusselt number increases when the Rayleigh number increases. In contrast, the convective heat transfer rate decreases when the Hartmann number increases due to the strong magnetic field which suppresses the buoyancy force. Also, a significant improvement in the heat transfer rate is observed when the magnetic field is applied and φ = 4.7% (I = 11.90%, I = 16.73%, I = 10.07% and I = 12.70%). Research limitations/implications The present numerical study was carried out for a steady, laminar and two-dimensional flow inside the square enclosure. Also, properties of the MNF are assumed to be constant (except thermal conductivity) under magnetic field. Practical implications The results can be used in thermal storage and cooling of electronic devices such as lithium-ion batteries during charging and discharging processes. Originality/value The accuracy of results and heat transfer enhancement having magnetic field-field-dependent thermal conductivity are noticeable. The results can be used for different applications to improve the heat transfer rate and enhance the efficiency of a system.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference64 articles.

1. Natural convection of micropolar nanofluids in a rectangular enclosure saturated with anisotropic porous media;Journal of Porous Media,2016

2. Finite difference approach in porous media transport modeling for magnetohydrodynamic unsteady flow over a vertical plate: darcian model;International Journal of Numerical Methods for Heat and Fluid Flow,2014

3. Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field;Heat and Mass Transfer,2013

4. Correlation for nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation;Journal of Magnetism and Magnetic Materials,2010

5. The effects of magnetization saturation on thermomagnetic convection in a locally heated square enclosure;Numerical Heat Transfer, Part A: Applications,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3