Friction factor calculation for turbulent flow in annulus with temperature effects

Author:

Sorgun Mehmet,Ulker Erman

Abstract

Purpose The purpose of this paper is to present a new friction factor equation for practical use, including fluid temperature, pipe diameter ratio and inner pipe rotation effects. Design/methodology/approach A friction factor relationship is developed by applying Buckingham’s Theorem of dimensional analysis. Then, the formula is calibrated using experimental data conducted at Izmir Katip Celebi University flow loop. Moreover, the effects of fluid temperature, inner pipe rotation and pipe diameter ratio on friction factor are investigated experimentally. Findings Satisfactory agreements are obtained between proposed formula and experiments. The experimental results indicate that major variable parameters affecting friction factor is Reynolds number. Pipe rotation has negligible effect on friction factor at high Reynolds number. Prandtl number is one of the important parameters affecting the friction factor. Moreover, as the pipe diameter ratio is decreased, friction factor increases. Originality/value Determining fluid behavior of fluids under high temperature is especially important for deep wells during drilling. Temperature drastically changes fluid properties and flow characteristics in wells. These changes have a remarkable effect on pressure losses. However, since the temperature is considered constant in the calculation of the pressure loss, problems can be encountered in most systems. Friction factor is one of the important parameters for determining pressure loss in closed conduits. The originality of this work is to propose a new friction factor equation for practical use, including fluid temperature, pipe diameter ratio and inner pipe rotation effects.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference16 articles.

1. A novel explicit equation for friction factor in smooth and rough pipes;The Journal of Fluids Engineering,2009

2. Das ähnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten;Forsch, Arb. Ing,1913

3. An explicit approximation of Colebrook's equation for fluid flow friction factor;Petroleum Science and Technology,2011

4. Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws;Journal of the Institution of Civil Engineers,1939

5. Prediction of oil-water flow patterns, radial distribution of volüme fraction, pressure and velocity during separated flows in horizontal pipe;Journal of Hydrodynamics,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3