Mach number effects on buffeting flow on a half wing-body configuration

Author:

Sartor Fulvio,Timme Sebastian

Abstract

Purpose The purpose of this paper is to discuss a numerical study of the flow over a wing representative of a large civil aircraft at cruise condition. For each Mach number considered, the numerical simulations indicate that critical angle of attack exists where the separated region increases in size and begins to oscillate. This phenomenon, known as transonic shock buffet, is reproduced by the unsteady simulation and much information can be extracted analysing location, amplitude and frequency content of the unsteadiness. Design/methodology/approach Reynolds-averaged Navier-Stokes simulations are conducted on a half wing-body configuration, at different Mach numbers and angles of attack. Different turbulence models are considered, and both steady-state results and time-accurate simulations are discussed. Findings The high number of cases presented in this study allows the creation of a database which, to the authors’ knowledge, has not been documented in literature before. The results indicate that, while high-fidelity approaches can improve the quality of the results, the URANS approach is capable of describing the main features of the buffet phenomenon. Research limitations/implications The presence of a turbulence model, despite allowing the description of the main unsteady phenomenon, might be insufficient to fully characterise the unsteadiness present in a transonic flow over a half wing-body configuration. Therefore, researchers are encouraged to verify by means of experimental investigation or high-fidelity approach the results issued from a Reynolds-averaged Navier-Stokes equations. Practical implications The results presented clearly indicate that, despite what proposed in recent research papers, transonic buffet can be described by means of time-accurate Reynolds-averaged Navier-Stokes equations. Such an approach is popular in the aeronautical industry because of its reduced costs, and could be used for wing design. Originality/value In this paper, the authors used a classical approach to tackle the known problem of transonic buffet in three-dimensional configurations. The large number of results presented can be used as a database for future numerical simulations and experiments, and allow to describe the flow-physics of the buffet unsteadiness on a half wing-body configuration.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3