Abstract
Purpose
– Variable density flows play an important role in many technological devices and natural phenomena. The purpose of this paper is to develop a robust and accurate method for low Mach number flows with large density and temperature variations.
Design/methodology/approach
– Low Mach number approximation approach is used in the paper combined with a predictor-corrector method and accurate compact scheme of fourth and sixth order. A novel algorithm is formulated for the projection method in which the boundary conditions for the pressure are implemented in such a way that the continuity equation is fulfilled everywhere in the computational domain, including the boundary nodes.
Findings
– It is shown that proposed implementation of the boundary conditions considerably improves a solution accuracy. Assessment of the accuracy was performed based on the constant density Burggraf flow and for two benchmark cases for the natural convection problems: steady flow in a square cavity and unsteady flow in a tall cavity. In all the cases the results agree very well with exemplary solutions.
Originality/value
– A staggered or half-staggered grid arrangement is usually used for the projection method for both constant and low Mach number flows. The staggered approach ensures stability and strong pressure-velocity coupling. In the paper a high-order compact method has been implemented in the framework of low Mach number approximation on collocated meshes. The resulting algorithm is accurate, robust for large density variations and is almost free from the pressure oscillations.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献