Stagnation point flow of a micropolar fluid filled with hybrid nanoparticles by considering various base fluids and nanoparticle shape factors

Author:

Khan Umair,Zaib Aurang,Pop Ioan,Abu Bakar Sakhinah,Ishak Anuar

Abstract

Purpose The boundary-layer analysis is required to reveal the fluid flow behavior in several industrial processes and enhance the products’ effectiveness. Therefore, this research aims to investigate the buoyancy or mixed convective stagnation-point flow (SPF) and heat transfer of a micropolar fluid filled with hybrid nanoparticles over a vertical plate. The nanoparticles silver (Ag) and titanium dioxide (TiO2) are scattered into various base fluids to form a new-fangled class of (Ag-TiO2/various base fluid) hybrid nanofluid along with different shape factors. Design/methodology/approach The self-similarity transformations are used to reformulate the leading requisite partial differential equations into renovated non-linear dimensionless ordinary differential equations. The numerical dual solutions are gained for the transmuted requisite equations with the help of the bvp4c built-in package in MATLAB software. The results are validated by comparing them with previously available published data for a particular case of the present study. Findings The impact of various pertaining parameters such as nanoparticle volume fraction, material parameter, shape factor and mixed convective on temperature, heat transfer, fluid motion, micro-rotation and drag force are visualized and scrutinized through tables and graphs. It is observed that dual or non-uniqueness outcomes are found for the case of buoyancy assisting flow, whereas the solution is unique in the buoyancy opposing flow case. Additionally, the fluid motion and micro-rotation profiles decelerate in the presence of nanoparticle volume fraction, while the temperature augments. Originality/value The mixed convective stagnation point flow conveying TiO2/Ag hybrid nanofluid with micropolar fluid with various shape factors is the significant originality of the current investigation where multiple outcomes are obtained for the assisting flow. The various base fluids such as glycerin, water and water–ethylene glycol (50%:50%) are considered in the present problem. The bifurcation values of the considered problem do not exist, probably because of various base fluids. To the best of the authors’ knowledge, this work is new and original which were not previously reported.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3