Comparison of artificial intelligence and empirical models for energy production estimation of 20 MWp solar photovoltaic plant at the Saharan Medium of Algeria

Author:

Bouchouicha Kada,Bailek Nadjem,Razagui Abdelhak,EL-Shimy Mohamed,Bellaoui Mebrouk,Bachari Nour El Islam

Abstract

Purpose This study aims to estimate the electric power production of the 20 MWp solar photovoltaic (PV) plant installed in the Adrar region, South of Algeria using minimal knowledge about weather conditions. Design/methodology/approach In this study, simulation models based on linear and nonlinear approaches were used to estimate accurate energy production from minimum radiometric and meteorological data. Simulations have been carried out by using multiple linear regression (MLR) and artificial neural network (ANN) models with three basic types of neuron connection architectures, namely, feed-forward neural network, cascade-forward neural network (CNN) and Elman neural network. The performance is measured based on evaluation indexes, namely, mean absolute percentage error, normalized mean absolute error and normalized root mean square error. Findings A comparison of the proposed ANN models has been made with MLR models. The performance analysis indicates that all the ANN-based models are superior in prediction accuracy and stability, and among these models, the most accurate results are obtained with the use of CNN-based models. Practical implications The considered model will be adopted in solar PV forecasting areas as part of the operational forecasting chain based on numerical weather prediction. It can be an effective and powerful forecasting approach for solar power generation for large-scale PV plants. Social implications The operational forecasting system can be used to generate an effective schedule for national grid electricity system operators to ensure the sustainability as well as favourable trading performance in the electricity, such as adjusting the scheduling plan, ensuring power quality, reducing depletion of fossil fuel resources and consequently decreasing the environmental pollution. Originality/value The proposed method uses the instantaneous radiometric and meteorological data in 15-min time interval recorded over the two years of operation, which made the result exploits a fact that the energy production estimation of PV power generation station is comparatively more accurate.

Publisher

Emerald

Subject

Strategy and Management,General Energy

Reference43 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3