Colorimetric pad for low-concentration formaldehyde monitoring in indoor air

Author:

Wongsakoonkan Watcharaporn,Pengpumkiat Sumate,Boonyayothin Vorakamol,Tangtong Chaiyanun,Laohaudomchok Wisanti,Phanprasit Wantanee

Abstract

PurposeThe purpose of this study was to develop an accurate, selective, low-cost and user-friendly colorimetric pad to detect formaldehyde at low concentration.Design/methodology/approach1-phenyl-1,3-butanedione, a reactive chemical, was selected to develop the colorimetric pad for indoor air formaldehyde measurement. Silica nanoparticle impregnated with the reactive chemical was coated on the cellulose filter surface to increase the reactive site. A certified formaldehyde permeation tube was used to generate six varied concentrations between 0.01 and 0.10 ppm in a test chamber. The color intensity on the pads was measured using an image processing program to produce a formaldehyde concentration reading chart. The colorimetric pad was tested for optimum reaction time, accuracy, precision, stability, selectivity and shelf life.FindingsThe color of the pads changed from white to yellow and the color intensity varied with the concentrations and appeared to be stable after exposure to formaldehyde for 8 hours. At room temperature, the stability of the pad was 7 days, and shelf life was 120 days. The accuracy, precision and bias of the pad were 12.38%, 0.032 and 6.0%, respectively. Carbonyl compounds, benzene and toluene did not interfere with the reading of this developed colorimetric pad.Originality/valueThe developed colorimetric pad meets NIOSH's criteria for an overall accuracy of ±25%, bias = 10%. They were accurate at low concentrations, user-friendly and had low cost compared to an electronic direct reading instrument (cost of chemicals and materials was 21.50 Bath or 0.69 USD per piece) so that favorable for the use of general people for health protection.

Publisher

Emerald

Subject

Public Health, Environmental and Occupational Health,Health Policy,Public Health, Environmental and Occupational Health,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3