Confining value from neural networks

Author:

Anagnostopoulos Ioannis,Rizeq Anas

Abstract

Purpose This study provides valuable insights to managers aiming to increase the effectiveness of their diversification and growth portfolios. The purpose of this paper is to examine the value of utilizing a neural networks (NNs) approach using mergers and acquisition (M&A) data confined in the US technology domain. Design/methodology/approach Using data from Bloomberg for the period 2000–2016, the results confirm that an NN approach provides more explanation between financial variables in the model than a traditional regression model where the NN approach of this study is then compared with linear classifier, logistic regression. The empirical results show that NN is a promising method of evaluating M&A takeover targets in terms of their predictive accuracy and adaptability. Findings The findings emphasize the value alternative methodologies provide in high-technology industries in order to achieve the screening and explorative performance objectives, given the technological complexity, market uncertainty and the divergent skill sets required for breakthrough innovations in these sectors. Research limitations/implications NN methods do not provide for a fuller analysis of significance for each of the autonomous variables in the model as traditional regression methods do. The generalization breadth of this study is limited within a specific sector (technology) in a specific country (USA) covering a specific period (2000–2016). Practical implications Investors value firms before investing in them to identify their true stock price; yet, technology firms pose a great valuation challenge to investors and analysts alike as the latest information technology stock price bubbles, Silicon Valley and as the recent stratospheric rise of financial technology companies have also demonstrated. Social implications Numerous studies have shown that M&As are more often than not destroy value rather than create it. More than 50 percent of all M&As lead to a decline in relative total shareholder return after one year. Hence, effective target identification must be built on the foundation of a credible strategy that identifies the most promising market segments for growth, assesses whether organic or acquisitive growth is the best way forward and defines the commercial and financial hurdles for potential deals. Originality/value Technology firm value is directly dependent on growth, consequently most of the value will originate from future customers or products not from current assets that makes it challenging for investors to measure a firm’s beta (risk) where the value of a technology is only known after its commercialization to the market. A differentiated methodological approach used is the use of NNs, machine learning and data mining to predict bankruptcy or takeover targets.

Publisher

Emerald

Subject

Business, Management and Accounting (miscellaneous),Finance

Reference108 articles.

1. Acker, O., Hagen, H. and Hajj, J. (2017), “2017 technology trends”, available at: www.strategyand.pwc.com/trend/2017-technology-trends (accessed May 16, 2017).

2. Acquisitions and Alliances (2016), “M&A statistics”, available at: www.imaa-institute.org/recources/statistics-mergers-acquisitions/ (accessed October 8, 2017).

3. Executive careers and compensation surrounding takeover bids;The Journal of Finance,1994

4. How have M&As changed? Evidence from the sixth merger wave;The European Journal of Finance,2012

5. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy;The Journal of Finance,1968

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3