Demand forecasting at retail stage for selected vegetables: a performance analysis

Author:

Priyadarshi Rahul,Panigrahi Akash,Routroy Srikanta,Garg Girish Kant

Abstract

Purpose The purpose of this study is to select the appropriate forecasting model at the retail stage for selected vegetables on the basis of performance analysis. Design/methodology/approach Various forecasting models such as the Box–Jenkins-based auto-regressive integrated moving average model and machine learning-based algorithms such as long short-term memory (LSTM) networks, support vector regression (SVR), random forest regression, gradient boosting regression (GBR) and extreme GBR (XGBoost/XGBR) were proposed and applied (i.e. modeling, training, testing and predicting) at the retail stage for selected vegetables to forecast demand. The performance analysis (i.e. forecasting error analysis) was carried out to select the appropriate forecasting model at the retail stage for selected vegetables. Findings From the obtained results for a case environment, it was observed that the machine learning algorithms, namely LSTM and SVR, produced the better results in comparison with other different demand forecasting models. Research limitations/implications The results obtained from the case environment cannot be generalized. However, it may be used for forecasting of different agriculture produces at the retail stage, capturing their demand environment. Practical implications The implementation of LSTM and SVR for the case situation at the retail stage will reduce the forecast error, daily retail inventory and fresh produce wastage and will increase the daily revenue. Originality/value The demand forecasting model selection for agriculture produce at the retail stage on the basis of performance analysis is a unique study where both traditional and non-traditional models were analyzed and compared.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Reference77 articles.

1. Improved supply chain management based on hybrid demand forecasts;Applied Soft Computing,2007

2. On the effect of non-optimal forecasting methods on supply chain downstream demand;IMA Journal of Management Mathematics,2012

3. Forecast errors and inventory performance under forecast information sharing;International Journal of Forecasting,2012

4. SKU demand forecasting in the presence of promotions;Expert Systems with Applications,2009

5. Stochastic characterization of upstream demand processes in a supply chain;IIE Transactions,2003

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3