Author:
Ju Hailong,Fang Yiting,Zhu Yezhen
Abstract
Purpose
Prior literature has long argued that knowledge networks contain great opportunities for innovation, and researchers can identify these opportunities using the properties of knowledge networks (PKNs). However, previous studies have examined only the relationship between structural PKNs (s-PKNs) and innovation, ignoring the effect of qualitative PKNs (q-PKNs), which refer to the quality of the relationship between two elements. This study aims to further investigate the effects of q-PKNs on innovation.
Design/methodology/approach
Using a panel data set of 2,255 patents from the Chinese wind energy industry, the authors construct knowledge networks to identify more PKNs and examine these hypotheses.
Findings
The results show that q-PKNs significantly influence recombinant innovation (RI), reflecting the importance of q-PKNs analysed in this study. Moreover, the results suggest that the combinational potential of an element with others may be huge at different levels of q-PKNs.
Originality/value
This study advances the understanding of PKNs and RI by exploring how q-PKNs impact RI. At different levels of PKNs, the potential of the elements to combine with others and form innovation are different. Researchers can more accurately identify the opportunities for RI using two kinds of PKNs. The findings also provide important implications on how government should provide support for R&D firms.
Subject
Management of Technology and Innovation,Strategy and Management
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献