Microreactors: ‘micro’managing our macro energy demands

Author:

Rossi Olivia,Chandrasekaran Arvind

Abstract

Purpose The purpose of this paper is to answer this question by discussing the practicality of implementing microreactor technology towards large-scale renewable energy generation, as well as provide an incentive for future researchers to utilize microreactors as a useful alternative tool for green energy production. However, can microreactors present a viable solution for the generation of renewable energy to tackle the on-going global energy crisis? Design/methodology/approach In this paper, the practicality of implementing microreactor technology toward large-scale renewable energy generation is discussed. Specific areas of interest that elucidate considerable returns of microreactors toward renewable energy production are biofuel synthesis, hydrogen conversion and solar energy harvesting. Findings It is believed that sustained research on microreactors can significantly accelerate the development of new energy production methods through renewable sources, which will undoubtedly aid in the quest for a greener future. Originality/value This work aims to provide a sound judgement on the importance of research on renewable energy production and alternative energy management methods through microreactor technology, and why future studies on this topic should be highly encouraged. The relevance of this opinion paper lies in the idea that microreactors are an innovative concept currently used in engineering to significantly accelerate chemical reactions on microscale volumes; with the feasibility of high throughput to convert energy at larger scales with much greater efficiency than existing energy production methods.

Publisher

Emerald

Subject

Strategy and Management,General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3