Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant

Author:

Bekkari Naceureddine,Zeddouri Aziez

Abstract

Purpose Modeling Wastewater Treatment Plant (WWTP) constitutes an important tool for controlling the operation of the process and for predicting its performance with substantial influent fluctuations. The purpose of this paper is to apply an artificial neural network (ANN) approach with a feed-forward back-propagation in order to predict the ten-month performance of Touggourt WWTP in terms of effluent Chemical Oxygen Demand (CODeff). Design/methodology/approach The influent variables such as (pHinf), temperature (TEinf), suspended solid (SSinf), Kjeldahl Nitrogen (KNinf), biochemical oxygen demand (BODinf) and chemical oxygen demand (CODinf) were used as input variables of neural networks. To determine the appropriate architecture of the neural network models, several steps of training were conducted, namely the validation and testing of the models by varying the number of neurons and activation functions in the hidden layer, the activation function in output layer as well as the learning algorithms. Findings The better results were achieved with an architecture network [6-50-1], hyperbolic tangent sigmoid activation functions at hidden layer, linear activation functions at output layer and a Levenberg – Marquardt method as learning algorithm. The results showed that the ANN model could predict the experimental results with high correlation coefficient 0.89, 0.96 and 0.87 during learning, validation and testing phases, respectively. The overall results indicated that the ANN modeling approach can provide an effective tool for simulating, controlling and predicting the performance of WWTP. Originality/value This work is the first of its kind in this region due to the remarkable development in terms of population and agricultural activity in the region, which drove to the increase of water pollutants, so it is necessary to use the modern technologies to modeling and controlling of WWTP.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health

Reference50 articles.

1. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters;Iranian Journal of Environmental Health Science & Engineering,2014

2. Artificial neural network model for synthetic streamflow generation;Water Resource Management,2007

3. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach;Process Safety and Environmental Protection,2015

4. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network;Water Resource,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3