Author:
Bekkari Naceureddine,Zeddouri Aziez
Abstract
Purpose
Modeling Wastewater Treatment Plant (WWTP) constitutes an important tool for controlling the operation of the process and for predicting its performance with substantial influent fluctuations. The purpose of this paper is to apply an artificial neural network (ANN) approach with a feed-forward back-propagation in order to predict the ten-month performance of Touggourt WWTP in terms of effluent Chemical Oxygen Demand (CODeff).
Design/methodology/approach
The influent variables such as (pHinf), temperature (TEinf), suspended solid (SSinf), Kjeldahl Nitrogen (KNinf), biochemical oxygen demand (BODinf) and chemical oxygen demand (CODinf) were used as input variables of neural networks. To determine the appropriate architecture of the neural network models, several steps of training were conducted, namely the validation and testing of the models by varying the number of neurons and activation functions in the hidden layer, the activation function in output layer as well as the learning algorithms.
Findings
The better results were achieved with an architecture network [6-50-1], hyperbolic tangent sigmoid activation functions at hidden layer, linear activation functions at output layer and a Levenberg – Marquardt method as learning algorithm. The results showed that the ANN model could predict the experimental results with high correlation coefficient 0.89, 0.96 and 0.87 during learning, validation and testing phases, respectively. The overall results indicated that the ANN modeling approach can provide an effective tool for simulating, controlling and predicting the performance of WWTP.
Originality/value
This work is the first of its kind in this region due to the remarkable development in terms of population and agricultural activity in the region, which drove to the increase of water pollutants, so it is necessary to use the modern technologies to modeling and controlling of WWTP.
Subject
Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献