Forecasting Euro against US dollar via combination of NARDL and Univariate techniques during COVID-19

Author:

AsadUllah Muhammad,Bashir Muhammad Adnan,Aleemi Abdur Rahman

Abstract

Purpose The purpose of this study is to examine the accuracy of combined models with the individual models in terms of forecasting Euro against US dollar during COVID-19 era. During COVID, the euro shows sharp fluctuation in upward and downward trend; therefore, this study is keen to find out the best-fitted model which forecasts more accurately during the pandemic. Design/methodology/approach The descriptive design has been adopted in this research. The three univariate models, i.e. autoregressive integrated moving averages (ARIMA), Naïve, exponential smoothing (ES) model, and one multivariate model, i.e. nonlinear autoregressive distributive lags (NARDL), are selected to forecast the exchange rate of Euro against the US dollar during the COVID. The above models are combined via equal weights and var-cor methods to find out the accuracy of forecasting as Poon and Granger (2003) showed that combined models can forecast better than individual models. Findings NARDL outperforms all remaining individual models, i.e. ARIMA, Naïve and ES. By applying a combination of different models via different techniques, the combination of NARDL and Naïve models outperforms all combination of models by scoring the least mean absolute percentage error value, i.e. 1.588. The combined forecasting of NARDL and Naïve techniques under var-cor method also outperforms the forecasting accuracy of individual models other than NARDL. It means the euro exchange rate against the US dollar which is dependent upon the macroeconomic fundamentals and recent observations of the time series. Practical implications The findings could help the FOREX market, hedgers, traders, businessmen, policymakers, economists, financial managers, etc., to minimize the risk indulged in global trade. It also helps to produce more accurate results in different financial models, i.e. capital asset pricing model and arbitrage pricing theory, because their findings may not be useful if exchange rate fluctuations do not trace effectively. Originality/value The NARDL models have been applied previously in different time series and only limited to the asymmetric or symmetric relationships. This study is using it for the forecasting exchange rate which is almost abandoned in earlier literature. Furthermore, this study combined the NARDL with univariate models to produce the accuracy which itself is a novelty. Moreover, the findings help to enhance the effectiveness of different financial theories as well.

Publisher

Emerald

Subject

Business and International Management,Management of Technology and Innovation

Reference53 articles.

1. Forecasting the exchange rate of the Jordanian Dinar versus the US dollar using a Box-Jenkins seasonal ARIMA model;International Journal of Mathematics and Computer Science,2020

2. Forecasting and combining competing models of exchange rate determination;Applied Economics,2008

3. Fundamentals and exchange rate forecast ability with machine learning methods;Journal of International Money and Finance,2018

4. Combining forecasts,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3