Computer vision and machine learning approaches for metadata enrichment to improve searchability of historical newspaper collections

Author:

Ali DilawarORCID,Milleville KenzoORCID,Verstockt Steven,Van de Weghe Nico,Chambers SallyORCID,Birkholz Julie M.

Abstract

PurposeHistorical newspaper collections provide a wealth of information about the past. Although the digitization of these collections significantly improves their accessibility, a large portion of digitized historical newspaper collections, such as those of KBR, the Royal Library of Belgium, are not yet searchable at article-level. However, recent developments in AI-based research methods, such as document layout analysis, have the potential for further enriching the metadata to improve the searchability of these historical newspaper collections. This paper aims to discuss the aforementioned issue.Design/methodology/approachIn this paper, the authors explore how existing computer vision and machine learning approaches can be used to improve access to digitized historical newspapers. To do this, the authors propose a workflow, using computer vision and machine learning approaches to (1) provide article-level access to digitized historical newspaper collections using document layout analysis, (2) extract specific types of articles (e.g. feuilletons – literary supplements from Le Peuple from 1938), (3) conduct image similarity analysis using (un)supervised classification methods and (4) perform named entity recognition (NER) to link the extracted information to open data.FindingsThe results show that the proposed workflow improves the accessibility and searchability of digitized historical newspapers, and also contributes to the building of corpora for digital humanities research. The AI-based methods enable automatic extraction of feuilletons, clustering of similar images and dynamic linking of related articles.Originality/valueThe proposed workflow enables automatic extraction of articles, including detection of a specific type of article, such as a feuilleton or literary supplement. This is particularly valuable for humanities researchers as it improves the searchability of these collections and enables corpora to be built around specific themes. Article-level access to, and improved searchability of, KBR's digitized newspapers are demonstrated through the online tool (https://tw06v072.ugent.be/kbr/).

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference124 articles.

1. A k-mean clustering algorithm for mixed numeric and categorical data;Data and Knowledge Engineering,2007

2. Computing similarity between items in a digital library of cultural heritage;Journal on Computing and Cultural Heritage (JOCCH),2013

3. Single image Façade segmentation and computational rephotography of House images using deep learning;Journal on Computing and Cultural Heritage (JOCCH),2021

4. Improving access to digitized historical newspapers with text mining, coordinated models, and formative user interface design,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3