Abstract
Purpose
The purpose of this paper was to develop the methodology of thick-film/low temperature co-fired ceramic (LTCC) multilayer thermoelectric microgenerator fabrication including the procedure of silver-nickel thermocouples integration with LTCC.
Design/methodology/approach
To miniaturize the structures and to increase the output parameters (generated voltage, electrical power), the microgenerator was designed as multilayer systems. It allows to reduce size of the system and to increase the number of thermocouples integrated inside the structure. It also protects buried thermocouples against exposure to harmful external factors (e.g. moisture, oxidation and mechanical exposures). As a substrate, LTCC was used. For the thermocouples fabrication, thick-film pastes based on silver and nickel were chosen. Ag/Ni thermocouple has nearly three times higher Seebeck coefficient and 30 per cent lower electrical resistance than the combination of Ag/PdAg used in previous works of the author.
Findings
A multi-layer thick-film thermoelectric generator based on LTCC and Ag, Ni pastes was fabricated. Thirty Ag/Ni thermocouples were precisely screen-printed on few layers. Thermocouples’ arms are 15 mm long and about 150 μm wide. Interlayer connections (via-holes filled with conductive paste) provided the electrical contact between the layers. The biggest fabricated harvester consisted of 90 miniature thermocouples buried inside the LTCC.
Originality/value
The paper presents the results of research that provided to optimize the co-firing process of the LTCC/Ni set. In the result, the methodology of co-firing of silver-nickel thermocouples and LTCC ceramic was elaborated. Also, the methodology of fabrication of miniature thermoelectric energy harvesters was optimized.
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Reference23 articles.
1. A new photoimageable platinum conductor;Microelectronics Reliability,2009
2. Low-temperature co-fired ceramics system for light absorbance measurement;International Journal of Applied Ceramic Technology,2013
3. High pressure sensor with PZT transducer in LTCC package;Procedia Engineering,2014
4. ElectroScience (ESL) (2016), “Ni-based paste”, available at: www.electroscience.com/pdf/2554-N-1.pdf (accessed January 2016).
5. Simulation of thermoelectric materials efficiency: the case study of Sr1-xYxTiO3 thermoelectric ceramic;Ceramics International,2016
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献