Optimal block search mechanism using deep recurrent neural network for enabling the code-efficiency in HEVC

Author:

Korishetti Anilkumar Chandrashekhar,Malemath Virendra S.

Abstract

Purpose High-efficiency video coding (HEVC) is the latest video coding standard that has better coding efficiency than the H.264/advanced video coding (AVC) standard. The purpose of this paper is to design and develop an effective block search mechanism for the video compression-HEVC standard such that the developed compression standard is applied for the communication applications. Design/methodology/approach In the proposed method, an rate-distortion (RD) trade-off, named regressive RD trade-off is used based on the conditional autoregressive value at risk (CaViar) model. The motion estimation (ME) is based on the new block search mechanism, which is developed with the modification in the Ordered Tree-based Hex-Octagon (OrTHO)-search algorithm along with the chronological Salp swarm algorithm (SSA) based on deep recurrent neural network (deepRNN) for optimally deciding the shape of search, search length of the tree and dimension. The chronological SSA is developed by integrating the chronological concept in SSA, which is used for training the deep RNN for ME. Findings The competing methods used for the comparative analysis of the proposed OrTHO-search based RD + chronological-salp swarm algorithm (RD + C-SSA) based deep RNN are support vector machine (SVM), fast encoding framework, wavefront-based high parallel (WHP) and OrTHO-search based RD method. The proposed video compression method obtained a maximum peak signal-to-noise ratio (PSNR) of 42.9180 dB and a maximum structural similarity index measure (SSIM) of 0.9827. Originality/value In this research, an effective block search mechanism was developed with the modification in the OrTHO-search algorithm along with the chronological SSA based on deepRNN for the video compression-HEVC standard.

Publisher

Emerald

Subject

General Engineering

Reference66 articles.

1. Historic building energy audit and retrofit simulation with hemp-lime plaster-a case study;Sustainability,2020

2. Chaotic based hybrid artificial sheep algorithm – particle swarm optimization for energy and secure aware in WSN;Journal of Networking and Communication Systems,2019

3. A review on congestion management methodologies and its applications;Journal of Computational Mechanics, Power System and Control,2020

4. Fully pipelined real time hardware solution for high-efficiency video coding (HEVC) intra prediction;Journal of Systems Architecture,2016

5. Human identification system based on spatial and temporal features in the video surveillance system;International Journal of Ambient Computing and Intelligence,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3