Adaptive sliding mode control for tunnel boring machine cutterhead telescopic system with uncertainties

Author:

Zhang Hangjun,Fang Jinhui,Wei Jianhua,Yu Huan,Zhang Qiang

Abstract

Purpose This paper aims to present an adaptive sliding mode control (ASMC) for tunnel boring machine cutterhead telescopic system with uncertainties to achieve a high-precision trajectory in complex strata. This method could be applied to solve the problems caused by linear and nonlinear model uncertainties. Design/methodology/approach First, an integral-type sliding surface is defined to reduce the static tracking error. Second, a projection type adaptation law is designed to approximate the linear and nonlinear redefined parameters of the electrohydraulic system. Third, a nonlinear robust term with a continuous approximation function is presented for handling load force uncertainty and reducing sliding mode chattering. Moreover, Lyapunov theory is applied to guarantee the stability of the closed-loop system. Finally, the effectiveness of the proposed controller is proved by comparative experiments on a scaled test rig. Findings The linear and nonlinear model uncertainties lead to large variations in the dynamics of the mechanism and the tracking error. To achieve precise position tracking, an adaptation law was integrated into the sliding mode control which compensated for model uncertainties. Besides, the inherent sliding mode chattering was reduced by a continuous approximation function, while load force uncertainty was solved by a nonlinear robust feedback. Therefore, a novel ASMC for tunnel boring machine cutterhead telescopic system with uncertainties can improve its tracking precision and reduce the sliding mode chattering. Originality/value To the best of the authors’ knowledge, the ASMC is proposed for the first time to control the tunnel boring machine cutterhead telescopic system with uncertainties. The presented control is effective not only in control accuracy but also in parameter uncertainty.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference39 articles.

1. Adaptive, high bandwidth control of a hydraulic actuator;Journal of Dynamic Systems, Measurement, and Control,1996

2. A review of PID control, tuning methods and applications;International Journal of Dynamics and Control,2021

3. Sliding control of an electropneumatic actuator using an integral switching surface;IEEE Transactions on Control Systems Technology,2001

4. Study of cutterhead and cutting tool selection and cutting tool replacement of large-diameter shield under atmospheric condition;Tunnel Construction,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3