Comparative study of materials for friction pairs in a new high water-based hydraulic motor with low speed and high pressure

Author:

Qiu Bingjing,Zhao Jiyun,Man Jiaxiang

Abstract

Purpose Aiming at improving the mechanical efficiency, the applicability and the working life of high water-based hydraulic motor (HWBHM) under working conditions at low speed and high pressure, the friction performance of different matching materials for piston slipper – crankshaft pair with high water-based hydraulic fluid (HWBHF) under working conditions at low speed and high pressure – were studied. Design/methodology/approach The friction experiments for different materials (316L, 316L with surface coating OVINO – tetrahedral amorphous carbon [TAC; 316L-TAC] – 316L with surface coating OVINO-graphite intercalated compound [GIC; 316L-GIC] and polyetheretherketone [PEEK] reinforced with 30 per cent carbon fiber [PEEK-30CF]) under HWBHF lubrication were implemented on a pin-disk friction abrasion machine to determine the variations of coefficient of friction (CoF) and wear rate for each matching materials. In addition, the roughness and the morphology of worn surface of different matching materials were quantitatively characterized. Findings The study revealed that material combinations have different friction performances. Test results showed that the abrasion of matching type stainless steel (SS) and SS is rather serious, and the method of surface coating could improve the friction performance of SS when friction with other materials. For matching type of SS with surface treatment (SS-ST) and SS-ST, 316L-GIC and 316L-GIC have relatively stable CoF, and the wear rate was smaller than other matching materials, while 316L-TAC and 316L-TAC has the smaller CoF than that of 316L-GIC. Matching materials 316L-GIC with PEEK-30CF of matching type SS-ST and PEEK-30CF has more stable COF and better wear resistance than those of other matching materials. Originality/value This research has laid a foundation for the improvement of service life and working efficiency of friction pair in HWBHM under working conditions at low speed and high pressure.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference21 articles.

1. Wear rates of resin composites;Operative Dentistry,2013

2. Design of pumps for water hydraulic systems,1999

3. Friction and wear behavior of several polymers sliding against GCR15 and 316 steel under the lubrication of sea water;Tribology Letters,2011

4. Effect of carbon fiber reinforcement in the frictional behaviour of PEEK in a water lubricated environment;Wear,2001

5. Stick-slip behaviours of water lubrication polymer materials under low speed conditions;Tribology International,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3