Searching for high pressure processing parameters for Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes reduction in Concord grape juice

Author:

Petrus RodrigoORCID,Churey John,Worobo Randy

Abstract

Purpose High pressure processing (HPP) has been widely used for high-acid (pH<4.6) juices. The purpose of this study was to investigate optimal parameters aimed at achieving 5-log reduction of the pathogens of reference in Concord grape juice (pH 3.39). Design/methodology/approach Grape juice was inoculated with five strain cocktails of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes. In total, 11 trials were carried out based on a Central Composite Rotational Design (CCRD). The pressure (P), ranging from 319 to 531 MPa, and dwell time (t), from 35 to 205 s, were tested. The performance of the combinations (P × t) was evaluated by pathogen challenge microbiological assays. Findings E. coli O157:H7 was more resistant to HPP than S. enterica. L. monocytogenes did not grow in unprocessed juice (before HPP). Findings demonstrated that moderate pressures (~400 MPa) and short dwell times (~2 min) were effective in achieving a greater than 5-log reduction in the pathogens of reference. Practical implications Because the maintenance costs of equipment exponentially increase with pressure beyond 600 MPa, significant reductions in process pressure are highly desirable. Originality/value The results of this study can supplement the dearth of information on the applicability of high pressure as a Concord grape juice processing technology in terms of the pathogens inactivation. Furthermore, the use of a cocktail of five strains of pathogens inoculated in Concord grape juice to challenge different HPP parameters has not been reported.

Publisher

Emerald

Subject

Food Science,Business, Management and Accounting (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3