Measuring financial performance of Indian manufacturing firms: application of decision tree algorithms

Author:

R.L. Manogna,Mishra Aswini Kumar

Abstract

Purpose Determining the relevant information using financial measures is of great interest for various stakeholders to analyze the performance of the firm. This paper aims at identifying these financial measures (ratios) which critically affect the firm performance. The authors specifically focus on discovering the most prominent ratios using a two-step process. First, the authors use an exploratory factor analysis to identify the underlying dimensions of these ratios, followed by predictive modeling techniques to identify the potential relationship between measures and performance. Design/methodology/approach The study uses data of 25 financial variables for a sample of 1923 Indian manufacturing firms which exist continuously between 2011 and 2018. For prediction models, four popular decision tree algorithms [Chi-squared automatic interaction detector (CHAID), classification and regression trees (C&RT), C5.0 and quick, unbiased, efficient statistical tree (QUEST)] were investigated, and the information fusion-based sensitivity analyses were performed to identify the relative importance of these input measures. Findings Results show that C5.0 and CHAID algorithms produced the best predictive results. The fusion sensitivity results find that net profit margin and total assets turnover rate are the most critical factors determining the firm performance in an Indian manufacturing context. These findings may enable managers in their decision-making process and also have vital implications for investors in assessing the performance of the firm. Originality/value To the best of the authors’ knowledge, the current paper is the first to address the application of decision tree algorithms to predict the performance of manufacturing firms in an emerging economy such as India, with the latest data. This practical perspective helps the organizations in managing the critical parameters for the firm’s growth.

Publisher

Emerald

Subject

Organizational Behavior and Human Resource Management,General Business, Management and Accounting

Reference56 articles.

1. Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks;Decision Support Systems,2008

2. Financial ratios, discriminant analysis and the predication of corporate bankruptcy;The Journal of Finance,1968

3. Financial ratios as predictors of failure;Journal of Accounting Research,1966

4. Statistical methods of the bankruptcy prediction in the logistics sector in Poland and Slovakia;Transformations in Business & Economics,2016

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3