Abstract
Purpose
The purpose of this paper is to propose a fractal model of thermal contact conductance (TCC) of rough surfaces based on cone asperity.
Design/methodology/approach
A detailed numerical study is conducted to examine the effects of contact load, fractal dimensional, fractal roughness and material properties on the TCC of rough surfaces.
Findings
The results indicate that when the fractal dimension D is less than 2.5, the TCC of rough surfaces increases nonlinearly with the increase of the contact load. However, when the fractal dimension D is greater than or equal to 2.5, the TCC of rough surfaces increases linearly with the increase of the contact load; the TCC of the rough surfaces increases with the increase of the fractal dimension D and the decrease of the fractal roughness G; the material parameters also have an influence on the TCC of the rough surfaces, and the extent of the effect on the TCC is related to the fractal dimension D.
Originality/value
A fractal model of TCC of rough surfaces based on cone asperity is established in this paper. Some new results and conclusions are obtained from this work, which provides important theoretical guidance for further study of TCC of rough surfaces.
Reference33 articles.
1. Thermal contact conductance of elastically deforming nominally flat surfaces using fractal geometry;Industrial Lubrication and Tribology,2013
2. Using metallic coatings to enhance thermal contact conductance of electronic packages;Heat Transfer Engineering,1988
3. Thermal contact conductance;International Journal of Heat and Mass Transfer,1969
4. The contact of two nominally flat rough surfaces;Proceedings of the Institution of Mechanical Engineers,1970
5. Contact of nominally flat surfaces;Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1966
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献