System identification of flybar-less rotorcraft UAV

Author:

T.K. Khadeeja Nusrath,V.P. Lulu,Singh Jatinder

Abstract

Purpose This paper aims to build an accurate mathematical model which is necessary for control design and attitude estimation of a miniature unmanned rotorcraft and its subsequent conversion to an autonomous vehicle. Design/methodology/approach Frequency-domain system identification of a small-size flybar-less remote controlled helicopter is carried out based on the input–output data collected from flight tests of the instrumented vehicle. A complete six degrees of freedom quasi-steady dynamic model is derived for hover and cruise flight conditions. Findings The veracity of the developed model is ascertained by comparing the predicted model responses to the actual responses from flight experiments and from statistical measures. Dynamic stability analysis of the vehicle is carried out using eigenvalues and eigenvectors. The identified model represents the vehicle dynamics very well in the frequency range of interest. Research limitations/implications The model needs to be augmented with additional terms to represent the high-frequency dynamics of the vehicle. Practical implications Control algorithms developed using the first principles model can be easily reconfigured using the identified model, because the model structure is not altered during identification. Originality/value This paper gives a practical solution for model identification and stability analysis of a small-scale flybar-less helicopter. The estimated model can be easily used in developing control algorithms.

Publisher

Emerald

Subject

Aerospace Engineering

Reference23 articles.

1. Automated flight test and system identification for rotary wing small aerial platform using frequency responses analysis;Journal of Bionic Engineering,2007

2. RC helicopter modeling using re-Engineering and system identification,2017

3. State estimation for a small scale flybar-less helicopter,2014

4. System identification of a small scaled helicopter using simulated annealing algorithm,2018

5. An overview on development of miniature unmanned rotorcraft systems;Frontiers of Electrical and Electronic Engineering in China,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved dynamic model identification method for small unmanned helicopter;Aircraft Engineering and Aerospace Technology;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3