Author:
Tahani Mojtaba,Masdari Mehran,Bargestan Ali
Abstract
Purpose
This paper aims to investigate the aerodynamic characteristics as well as static stability of wing-in-ground effect aircraft. The effect of geometrical characteristics, namely, twist angle, dihedral angle, sweep angle and taper ratio are examined.
Design/methodology/approach
A three-dimensional computational fluid dynamic code is developed to investigate the aerodynamic characteristics of the effect. The turbulent model is utilized for characterization of flow over wing surface.
Findings
The numerical results show that the maximum change of the drag coefficient depends on the angle of attack, twist angle and ground clearance, in a decreasing order. Also, it is found that the lift coefficient increases as the ground clearance, twist angle and dihedral angle decrease. On the other hand, the sweep angle does not have a significant effect on the lift coefficient for the considered wing section and Reynolds number. Also, as the aerodynamic characteristics increase, the taper ratio befits in trailing state.
Practical implications
To design an aircraft, the effect of each design parameter needs to be estimated. For this purpose, the sensitivity analysis is used. In this paper, the influence of all parameter against each other including ground clearance, angle of attack, twist angle, dihedral angle and sweep angle for the NACA 6409 are investigated.
Originality/value
As a summary, the contribution of this paper is to predict the aerodynamic performance for the cruise condition. In this study, the sensitivity of the design parameter on aerodynamic performance can be estimated and the effect of geometrical characteristics has been investigated in detail. Also, the best lift to drag coefficient for the NACA 6409 wing section specifies and two types of taper ratios in ground effect are compared.
Reference32 articles.
1. An investigation on the aerodynamics of a symmetrical airfoil in ground effect;Journal of Thermal and Fluid Science,2005
2. Longitudinal stability and dynamic motion of a small passenger WIG craft;Journal of Ocean Engineering,2002
3. Comisarow, P., Brasseur, G.W. and David Taylor Model Basin Washington DC Aedynamics Lab, (1966), “An evaluation of the Wing-in-Ground effect (WIG) transport aircraft concept”, Defense Technical Information Centre, Fort Belvoir.
4. Aerodynamics of smart flap underground effect;Journal of Aerospace Science and Technology,2011
5. Turbulence flow for NACA 4412 in unbounded flow and ground effect with different turbulence models and two ground conditions: fixed and moving ground conditions,2006
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献