Determining aircraft maintenance times in civil aviation under the learning effect

Author:

Atici Uğur,Şenol Mehmet Burak

Abstract

Purpose Scheduling of aircraft maintenance operations is a gap in the literature. Maintenance times should be determined close to the real-life to schedule aircraft maintenance operations effectively. The learning effect, which has been studied extensively in the machine scheduling literature, has not been investigated on aircraft maintenance times. In the literature, the production times under the learning effect have been examined in numerous studies but for merely manufacturing and assembly lines. A model for determining base and line maintenance times in civil aviation under the learning effect has not been proposed yet. It is pretty challenging to determine aircraft maintenance times due to the various aircraft configurations, extended maintenance periods, different worker shifts and workers with diverse experience and education levels. The purpose of this study is to determine accurate aircraft maintenance times rigorously with a new model which includes the group learning effect with the multi-products and shifts, plateau effect, multi sub-operations and labour firings/rotations. Design/methodology/approach Aircraft maintenance operations are carried out in shifts. Each maintenance operation consists of many sub-operations that are performed by groups of workers. Thus, various models, e.g. learning curve for maintenance line (MLC), MLC with plateau factor (MPLC), MLC with group factor (MGLC) were developed and used in this study. The performance and efficiency of the models were compared with the current models in the literature, such as the Yelle Learning model (Yelle), single learning curve (SLC) model and SLC with plateau factor model (SLC-P). Estimations of all these models were compared with actual aircraft maintenance times in terms of mean absolute deviation (MAD), mean absolute percentage error (MAPE) and mean square of the error (MSE) values. Seven years (2014–2020) maintenance data of one of the top ten maintenance companies in civil aviation were analysed for the application and comparison of learning curve models. Findings The best estimations in terms of MAD, MAPE and MSE values are, respectively, gathered by MGLC, SLC-P, MPLC, MLC, SLC and YELLE models. This study revealed that the models (MGLC, SLC-P, MPLC), including the plateau factor, are more efficient in estimating accurate aircraft maintenance times. Furthermore, MGLC always made the closest estimations to the actual aircraft maintenance times. The results show that the MGLC model is more accurate than all of the other models for all sub-operations. The MGLC model is promising for the aviation industry in determining aircraft maintenance times under the learning effect. Originality/value In this study, learning curve models, considering groups of workers working in shifts, have been developed and employed for the first time for estimating more realistic maintenance times in aircraft maintenance. To the best of the authors’ knowledge, the effect of group learning on maintenance times in aircraft maintenance operations has not been studied. The novelty of the models are their applicability for groups of workers with different education and experience levels working in the same shift where they can learn in accordance with their proportion of contribution to the work and learning continues throughout shifts. The validity of the proposed models has been proved by comparing actual aircraft maintenance data. In practice, the MGLC model could efficiently be used for aircraft maintenance planning, certifying staff performance evaluations and maintenance trainings. Moreover, aircraft maintenance activities can be scheduled under the learning effect and a more realistic maintenance plan could be gathered in that way.

Publisher

Emerald

Subject

Aerospace Engineering

Reference55 articles.

1. Optimisation of time and cost through learning curve analysis;Ain Shams Engineering Journal,2020

2. Geodesic-based manifold learning for parameterisation of triangular meshes;International Journal on Interactive Design and Manufacturing (IJIDeM),2016

3. Learning curve for transforaminal percutaneous endoscopic lumbar discectomy: a systematic review;World Neurosurgery,2020

4. An invited commentary on: comparison of the learning curves for robotic left and right hemiheparectomy: a prospective cohort study;International Journal of Surgery 2020,2020

5. Aggregate production planning with learning effect and uncertain demand;Journal of Modelling in Management,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3