Numerical analysis of supersonic co-flow jet with varying lip thickness

Author:

K Sathish Kumar,R Naren Shankar,K Anusindhiya,B.R. Senthil Kumar

Abstract

Purpose This study aims to present the numerical study on supersonic jet mixing characteristics of the co-flow jet by varying lip thickness (LT). The LT chosen for the study is 2 mm, 7.75 mm and 15 mm. Design/methodology/approach The primary nozzle is designed for delivering Mach 2.0 jet, whereas the secondary nozzle is designed for delivering Mach 1.6 jet. The Nozzle pressure ratio chosen for the study is 3 and 5. To study the mixing characteristics of the co-flow jet, total pressure and Mach number measurements were taken along and normal to the jet axis. To validate the numerical results, the numerical total pressure values were also compared with the experimental result and it is proven to have a good agreement. Findings The results exhibit that, the 2 mm lip is shear dominant. The 7.75 mm and 15 mm lip is wake dominant. The jet interaction along the jet axis was also studied using the contours of total pressure, Mach number, turbulent kinetic energy and density gradient. The radial Mach number contours at the various axial location of the jet was also studied. Practical implications The effect of varying LT in exhaust nozzle plays a vital role in supersonic turbofan aircraft. Originality/value Supersonic co-flowing jet mixing effectiveness by varying the LT between the primary supersonic nozzle and the secondary supersonic nozzle has not been analyzed in the past.

Publisher

Emerald

Subject

Aerospace Engineering

Reference21 articles.

1. Aircraft noise reduction technologies: a bibliographic review;Aerospace Science and Technology,2008

2. Analytical predictions and measurements of the noise radiated from supersonic coaxial jets;AIAA Journal,2000

3. Momentum and mass transfer in coaxial gas jets;Journal of Applied Mechanics,1949

4. Mixing layer characteristics of coaxial supersonic jets,2000

5. Mean flow development in dual-stream compressible jets;AIAA Journal,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of varying velocity ratio and separation distance on thin lip coaxial jet;Aircraft Engineering and Aerospace Technology;2023-01-11

2. Effect of bypass ratio on sonic underexpanded co-flow jets with finite lip thickness;International Journal of Turbo & Jet-Engines;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3