Conceptual design of a gliding UAV for bird strike prevention and observation

Author:

Kafali Hasim,Keskin Göksel

Abstract

Purpose The purpose of this paper is to create a conceptual design a bird-inspired unmanned aerial vehicle (UAV) that can stay in the air for a long time while this design influences the species near the airport with predator appearance. To achieve that goal, reverse engineering methods took into account to find out optimal parameter, and effective bird species were examined to be taken as an example. Design/methodology/approach Design parameters were determined according to the behaviour of bird species in the region and their natural enemies. Dalaman airport where is located near the fresh water supplies and sea, was chosen as the area to run. To keep such birds away from the airport and to prevent potential incidents, information from animal behaviour studies is enormously important. According to Tinbergen, chicken and gees reacted to all short-necked birds because they thought they were predators. The entire method is based on information from these data, along with reverse engineering principles. Findings UAV can remain in the air for more than 5 min when the engine stops at an altitude of 200 m. Also, when the UAV loses altitude of 100 m, it can cover a distance of about 2 m with the 19.8-glide ratio. Moreover, 380 KV brushless electric motor can provide 5.2 kg thrust force with 17 × 8-inch folding propeller which means 1.3 thrust to weight ratio (T/W). This engine and propeller combination work up to 12 min at maximum power with 7000 mAh lipo-battery. The UAV can climb more than 40 min at 0.2 T/W ratio. Research limitations/implications While bird-inspired UAV trials have just begun, general ornithopter studies have taken smaller birds as their source because this is the limit of the flapping wing, one of the largest birds modelled in this study. Thus, it is inevitable the UAV influences other birds in the area. In addition, this bird’s inherent flight behaviour, such as soaring, ridge lifting and gliding, will increase its credibility. Owing to size similarity with UAV systems, reverse engineering methods worked well in the design. Practical implications Some of the specialist try to fly trained falcon in airport as an alternative method. This study focussed on the design of a bird-inspired UAV by optimizing the glide performance, both for scare the other birds around the airport and for the observation of birds in the vicinity and for the identification of bird species. Social implications As this type of work has been proven to reduce the risk of bird strikes, the sense of flight safety on society will increase. Originality/value Researchers and companies generally work on flapping wing models for related subjects. However, these products are kind of model of the Falconiformes species which don’t have too much influence on big birds. For this reason, the authors took account of Imperial eagle’s specifications. These birds perform long soaring flights while seeking for prey like the glider design. So, the authors think it is a new approach for designing UAV for preventing bird-strike.

Publisher

Emerald

Subject

Aerospace Engineering

Reference32 articles.

1. Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery;Surveying and Land Information Science,2005

2. Modeling the cost of bird strikes to US civil aircraft;Transportation Research Part D: Transport and Environment,2015

3. The ornithological importance of Dalaman (Muğla, Turkey) wetlands and threats to the bird population;Turkish Journal of Zoology,2011

4. Beyond falconry between tradition and modernity: a new device for bird strike hazard prevention at airports,2008

5. Crowded skies: conflicts between expanding goose populations and aviation safety;Ambio,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing and producing a bird-inspired unmanned sailplane;Aircraft Engineering and Aerospace Technology;2021-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3