Fire risk assessment of airborne lithium battery based on entropy weight improved cloud model

Author:

Shao Lei,He Jiawei,Zeng Xianjun,Hu Hanjie,Yang Wenju,Peng Yang

Abstract

Purpose The purpose of this paper is to combine the entropy weight method with the cloud model and establish a fire risk assessment method for airborne lithium battery. Design/methodology/approach In this paper, the fire risk assessment index system is established by fully considering the influence of the operation process of airborne lithium battery. Then, the cloud model based on entropy weight improvement is used to analyze the indexes in the system, and the cloud image is output to discuss the risk status of airborne lithium batteries. Finally, the weight, expectation, entropy and hyperentropy are analyzed to provide risk prevention measures. Findings In the risk system, bad contact of charging port, mechanical extrusion and mechanical shock have the greatest impact on the fire risk of airborne lithium battery. The fire risk of natural factors is at a low level, but its instability is 25% higher than that of human risk cases and 150% higher than that of battery risk cases. Practical implications The method of this paper can evaluate any type of airborne lithium battery and provide theoretical support for airborne lithium battery safety management. Originality/value After the fire risk assessment is completed, the risk cases are ranked by entropy weight. By summarizing the rule, the proposed measures for each prevention level are given.

Publisher

Emerald

Subject

Aerospace Engineering

Reference33 articles.

1. Application of SMES-FCL in electric aircraft for stability improvement;IEEE Transactions on Applied Superconductivity,2019

2. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles;Renewable and Sustainable Energy Reviews,2016

3. Electric power systems in more and all electric aircraft: a review;IEEE Access,2020

4. Design of a safe and reliable Li-ion battery system for applications in airborne system,2014

5. Civil Aviation Administration of China (CAAC) (2013), “Tests for lithium batteries transported by air”, CAAC, Beijing, MH/T 1052-2013.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3