Abstract
PurposeThe aim of this paper is to circumvent the multi‐distribution effects and small sample constraints that may arise in unreplicated‐saturated fractional factorial designs during construction blueprint screening.Design/methodology/approachA simple additive ranking scheme is devised based on converting the responses of interest to rank variables regardless of the nature of each response and the optimization direction that may be issued for each of them. Collapsing all ranked responses to a single rank response, appropriately referred to as “Super‐Ranking”, allows simultaneous optimization for all factor settings considered.Research limitations/implicationsThe Super‐Rank response is treated by Wilcoxon's rank sum test or Mann‐Whitney's test, aiming to establish possible factor‐setting differences by exploring their statistical significance. An optimal value for each response is predicted.Practical implicationsIt is stressed, by example, that the model may handle simultaneously any number of quality characteristics. A case study based on a real geotechnical engineering project is used to illustrate how this method may be applied for optimizing simultaneously three quality characteristics that belong to each of the three possible cases, i.e. “nominal‐is‐best”, “larger‐is‐better”, and “smaller‐is‐better” respectively. For this reason, a screening set of experiments is performed on a professional CAD/CAE software package making use of an L8(27) orthogonal array where all seven factor columns are saturated by group excavation controls.Originality/valueThe statistical nature of this method is discussed in comparison with results produced by the desirability method for the case of exhausted degrees of freedom for the error. The case study itself is a unique paradigm from the area of construction operations management.
Subject
Strategy and Management,General Business, Management and Accounting
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献