Fake news detection on Twitter

Author:

Sharma Srishti,Saraswat Mala,Dubey Anil Kumar

Abstract

Purpose Owing to the increased accessibility of internet and related technologies, more and more individuals across the globe now turn to social media for their daily dose of news rather than traditional news outlets. With the global nature of social media and hardly any checks in place on posting of content, exponential increase in spread of fake news is easy. Businesses propagate fake news to improve their economic standing and influencing consumers and demand, and individuals spread fake news for personal gains like popularity and life goals. The content of fake news is diverse in terms of topics, styles and media platforms, and fake news attempts to distort truth with diverse linguistic styles while simultaneously mocking true news. All these factors together make fake news detection an arduous task. This work tried to check the spread of disinformation on Twitter. Design/methodology/approach This study carries out fake news detection using user characteristics and tweet textual content as features. For categorizing user characteristics, this study uses the XGBoost algorithm. To classify the tweet text, this study uses various natural language processing techniques to pre-process the tweets and then apply a hybrid convolutional neural network–recurrent neural network (CNN-RNN) and state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) transformer. Findings This study uses a combination of machine learning and deep learning approaches for fake news detection, namely, XGBoost, hybrid CNN-RNN and BERT. The models have also been evaluated and compared with various baseline models to show that this approach effectively tackles this problem. Originality/value This study proposes a novel framework that exploits news content and social contexts to learn useful representations for predicting fake news. This model is based on a transformer architecture, which facilitates representation learning from fake news data and helps detect fake news easily. This study also carries out an investigative study on the relative importance of content and social context features for the task of detecting false news and whether absence of one of these categories of features hampers the effectiveness of the resultant system. This investigation can go a long way in aiding further research on the subject and for fake news detection in the presence of extremely noisy or unusable data.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference74 articles.

1. Detecting hoaxes, frauds, and deception in writing style online,2012

2. Detection of online fake news using N-gram analysis and machine learning techniques,2017

3. Fake news identification on twitter with hybrid CNN and RNN models,2018

4. Detecting fake news in social media networks,2018

5. Social media and fake news in the 2016 election;Journal of Economic Perspectives,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer-based models for combating rumours on microblogging platforms: a review;Artificial Intelligence Review;2024-07-20

2. NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet;Computer Modeling in Engineering & Sciences;2024

3. Advancements in Fake News Detection Using Machine and Deep Learning Models: Comprehensive Literature Review;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

4. Emotion-Aware Fake News Detection on Social Media with BERT Embeddings;2023 International Conference on Modeling & E-Information Research, Artificial Learning and Digital Applications (ICMERALDA);2023-11-24

5. Topic to Image: A Rumor Detection Method Inspired by Image Forgery Recognition Technology;IEEE Transactions on Computational Social Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3