Keyword-based faceted search interface for knowledge graph construction and exploration

Author:

Sellami Samir,Zarour Nacer Eddine

Abstract

Purpose Massive amounts of data, manifesting in various forms, are being produced on the Web every minute and becoming the new standard. Exploring these information sources distributed in different Web segments in a unified way is becoming a core task for a variety of users’ and companies’ scenarios. However, knowledge creation and exploration from distributed Web data sources is a challenging task. Several data integration conflicts need to be resolved and the knowledge needs to be visualized in an intuitive manner. The purpose of this paper is to extend the authors’ previous integration works to address semantic knowledge exploration of enterprise data combined with heterogeneous social and linked Web data sources. Design/methodology/approach The authors synthesize information in the form of a knowledge graph to resolve interoperability conflicts at integration time. They begin by describing KGMap, a mapping model for leveraging knowledge graphs to bridge heterogeneous relational, social and linked web data sources. The mapping model relies on semantic similarity measures to connect the knowledge graph schema with the sources' metadata elements. Then, based on KGMap, this paper proposes KeyFSI, a keyword-based semantic search engine. KeyFSI provides a responsive faceted navigating Web user interface designed to facilitate the exploration and visualization of embedded data behind the knowledge graph. The authors implemented their approach for a business enterprise data exploration scenario where inputs are retrieved on the fly from a local customer relationship management database combined with the DBpedia endpoint and the Facebook Web application programming interface (API). Findings The authors conducted an empirical study to test the effectiveness of their approach using different similarity measures. The observed results showed better efficiency when using a semantic similarity measure. In addition, a usability evaluation was conducted to compare KeyFSI features with recent knowledge exploration systems. The obtained results demonstrate the added value and usability of the contributed approach. Originality/value Most state-of-the-art interfaces allow users to browse one Web segment at a time. The originality of this paper lies in proposing a cost-effective virtual on-demand knowledge creation approach, a method that enables organizations to explore valuable knowledge across multiple Web segments simultaneously. In addition, the responsive components implemented in KeyFSI allow the interface to adequately handle the uncertainty imposed by the nature of Web information, thereby providing a better user experience.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference37 articles.

1. Faceted search over RDF-based knowledge graphs;Journal of Web Semantics,2016

2. Entity recommendations in web search,2013

3. Reprint of: the anatomy of a large-scale hypertextual web search engine;Computer Networks,2012

4. Synthesizing knowledge graphs from web sources with the MINTE + framework,2018

5. UMBC_EBIQUITY-CORE: Semantic textual similarity systems,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3