Enhancing the viewing, browsing and searching of knowledge graphs with virtual properties

Author:

Dibowski Henrik

Abstract

Purpose Adequate means for easily viewing, browsing and searching knowledge graphs (KGs) are a crucial, still limiting factor. Therefore, this paper aims to present virtual properties as valuable user interface (UI) concept for ontologies and KGs able to improve these issues. Virtual properties provide shortcuts on a KG that can enrich the scope of a class with other information beyond its direct neighborhood. Design/methodology/approach Virtual properties can be defined as enhancements of shapes constraint language (SHACL) property shapes. Their values are computed on demand via protocol and RDF query language (SPARQL) queries. An approach is demonstrated that can help to identify suitable virtual property candidates. Virtual properties can be realized as integral functionality of generic, frame-based UIs, which can automatically provide views and masks for viewing and searching a KG. Findings The virtual property approach has been implemented at Bosch and is usable by more than 100,000 Bosch employees in a productive deployment, which proves the maturity and relevance of the approach for Bosch. It has successfully been demonstrated that virtual properties can significantly improve KG UIs by enriching the scope of a class with information beyond its direct neighborhood. Originality/value SHACL-defined virtual properties and their automatic identification are a novel concept. To the best of the author’s knowledge, no such approach has been established nor standardized so far.

Publisher

Emerald

Reference29 articles.

1. Jekyll RDF: template-based linked data publication with minimized effort and maximum scalability;International Conference on Web Engineering (ICWE 2019),2019

2. Model-driven rich user interface generation from ontologies for data-intensive web applications,2011

3. Toward a unified modeling of learner's growth process and flow theory;Educational Technology and Society,2016

4. Using knowledge graphs to manage a data lake,2020

5. Virtual properties for ontologies and knowledge graphs,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3