The impact of memory effect in the higher-order time-fractional derivative for hygrothermoelastic cylinder

Author:

Sheikh ShahalaORCID,Khalsa LalsinghORCID,Varghese VinodORCID

Abstract

PurposeThe influence of the temperature discrepancy parameter and higher order of the time-derivative is discussed. Classical coupled and generalized hygrothermoelasticity models are recovered by considering the various special cases and illustrated graphically.Design/methodology/approachThe theory of integral transformations has been used to study a new hygrothermal model that includes higher-order time derivatives with three-phase-lags and memory-dependent derivatives (MDD). This model considers the microscopic structure’s influence on a non-simple hygrothermoelastic infinitely long cylinder. The generalized Fourier and Fick’s law was adopted to derive the linearly coupled partial differential equations with higher-order time-differential with the two-phase lag model, including memory-dependent derivatives for the hygrothermal field. The investigation of microstructural interactions and the subsequent hygrothermal change has been undertaken as a result of the delay time and relaxation time translations.FindingsThese two-phase-lag models are also practically applicable in modeling nanoscale heat and moisture transport problems applied to almost all important devices. This work will enable future investigators to gain insight into non-simple hygrothermoelasticity with different phase delays of higher order in detail.Originality/valueTo the best of my knowledge, and after completing an intensive search of the relevant literature, the author could not learn any published research that presents a general solution for a higher-order time-fractional three-phase-lag hygrothermoelastic infinite circular cylinder with memory memory-dependent derivative.

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Memory-based thermoelastic modelling of an annular disc under heating and cooling processes;International Journal of Applied Mechanics and Engineering;2024-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3