Author:
Konuk Ege Gözde,Akay Özge,Yüce Hüseyin
Abstract
Purpose
The purpose of this study is to investigate the ammonia sensing performance of polyaniline/polyethylene oxide (PANI/PEO) and polyaniline/polyethylene oxide/zinc oxide (PANI/PEO-ZnO) composite nanofibers at room temperature.
Design/methodology/approach
Gas sensor structures were fabricated using micro-fabrication techniques. First, onto the SiO2 wafer, gold electrodes were fabricated via thermal evaporation. PANI/PEO nanofibers were produced by the electrospinning method and the ZnO layer was deposited by RF magnetron sputtering on the electrospun nanofibers as a sensing layer. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were performed for characterization analysis of nanofibers. After all, gas sensing analysis of PANI/PEO and PANI/PEO/ZnO nanofibers was performed using an experimental setup at room temperature conditions.
Findings
FTIR analysis confirms the presence of functional groups of PANI, PEO and ZnO in nanofiber structure. SEM images demonstrate beads-free, thinner and smooth nanofibers with ZnO contribution to electrospun PANI/PEO nanofibers. Moreover, according to the gas sensing results, the PANI/PEO nanofibers exhibit 115 and 457 s response time and recovery time, respectively. However, the PANI/PEO/ZnO nanofibers exhibit 245 and 153 s response time and recovery time, respectively.
Originality/value
In this study, ZnO was deposited via RF magnetron sputtering techniques on PANI/PEO nanofibers as a different approach instead of in situ polymerization, to investigate and enhance the sensor response and recovery time of the PANI/PEO/ZnO and PANI/PEO composite nanofibers to ammonia. These results indicated that ZnO can enhance the sensing properties of conductive polymer based resistive sensors.
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials