Sewing and adhesive bonding technologies for smart clothing production

Author:

Domskiene JurgitaORCID,Mitkute ModestaORCID,Grigaliunas Valdas

Abstract

PurposeThis paper aims to present investigations of the influence of sewing and adhesive bonding technology on the aesthetic, mechanical and conductive properties of the e-textile package. Commercially available conductive textiles are tested for the production of e-textile package by most common cut-and-sewn clothing production technologies.Design/methodology/approachSewing, adhesive bonding and seam sealing technologies used to obtain e-textile packages with woven and knitted conductive textiles. Produced e-textile packages described in terms of thickness, bending rigidity and general appearance. Exploitation properties of prepared samples tested by cycle tensile experiment and discussed on the basis of variation of linear electrical resistance property.FindingsResearch has shown that a reliable e-textile package can be obtained by applying cut-and-sew technology for conductive tracks of silver coated woven and knitted material. Seam sealing by thermoplastic polymer layer has an impact on the electrical and deformation properties of the samples. To create attractive smart clothing design, the appropriate joining method and its technological parameters must be chosen to ensure the durability and safety of e-textile packages.Originality/valueThe findings of the research are of substantial value for the production of e-textiles by cut-and-sewn technologies. The required shape of the conductive textile element for various applications can be cut and joined to the garment parts using traditional sewing or adhesive bonding techniques.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3