Preferred local electrical heating and its effect on overall thermal response

Author:

Chen XueORCID,Zhang ZhaohuaORCID,Yang Yutong

Abstract

PurposeThe purpose of this paper is to explore the distribution of local thermal sensitivity of human body heating and the local preferred heating temperature, and the influence of this sensitive division on thermal response when heating human body in cold environment.Design/methodology/approachEight subjects were invited to use carbon fiber heating patches in an environment of 5 and RH 50%, and eight body parts were selected to explore the heating sensitivity. By measuring the skin temperature and evaluating the subjective thermal sensation and thermal comfort, the thermal sensitivity of local body segments and the influence of single-zone and double-zone heating on human thermal response were explored.FindingsThe sensitivity of local heating on overall thermal sensation (OTS) was foot > back > chest > abdomen > waist > elbow > hand > knee. Both single-zone and double-zone heating can improve the OTS, but double-zone heating can reach thermal neutrality and thermal comfort. In order to prevent the high temperature of heating patches from damaging human body, the local skin temperature should be monitored in the design of local heating clothing, and 39.6 should be taken as the upper limit of local skin temperature.Originality/valueThe results provide a theoretical basis for the selection of heating position in local electric heating clothing (EHC) and the design of intelligent temperature adjustment heating clothing, improve the performance of local EHC and reduce energy consumption.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3