A new energy-based model to predict spray droplet diameter in comparison with momentum-based models

Author:

Karimaei Hadiseh,Hosseinalipour Seyed Mostafa,Ghorbani Ramin

Abstract

Purpose To estimate mean droplet diameter (MDD) of a spray, three different numerical models were used in this paper. One of them is investigation of the surface instability of the liquid sheet producing from an injector. Design/methodology/approach First, the linear instability (LI) analysis introduced by Ibrahim (2006) is implemented. Second, the improved (ILI) analysis already introduced by the present authors is used. ILI analysis is different from the prior analysis, so that the instability of hollow-cone liquid sheet with different cone angles is investigated rather than a cylindrical liquid sheet. It means that besides the tangential and axial movements, radial movements of the liquid sheet and gas streams have been considered in the governing equations. Beside LI theory as a momentum-based approach, a new model as a theoretical energy-based (TEB) model based on the energy conservation law is proposed in this paper. Findings Based on the energy-based approach, atomization occurs because of kinetic energy loss. The resulting formulation reveals that the MDD is inversely proportional to the atomization efficiency and liquid Weber number. Research limitations/implications The results of these three models are compared with the available experimental data. Prediction obtained by the proposed TEB model is in reasonable agreement with the result of experiment. Practical implications The results of these three models are compared with the available experimental data. Prediction of the proposed energy-based theoretical model is in very good agreement with experimental data. Originality/value Comparison between the results of new model, experimental data, other previous methods show that it can be used as a new simple and fast model to achieve good estimation of spray MDD.

Publisher

Emerald

Subject

Aerospace Engineering

Reference21 articles.

1. Surface wave transition before breakup on a laminar liquid jet;International Journal of Heat and Fluid Flow,1999

2. Modeling drop size distributions;Progress in Energy and Combustion Science,2002

3. Dependence of ink jet dynamics on fluid characteristics;IBM Journal of Research and Development,1976

4. Theoretical and experimental study of atomization from an annular liquid sheet;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3