Systematic evaluation of the helicopter rotor blades: design variables and interactions

Author:

Shahmiri Farid,Sargolzehi Maryam,Shahi Ashtiani Mohammad Ali

Abstract

Purpose The effects of rotor blade design variables and their mutual interactions on aerodynamic efficiency of helicopters are investigated. The aerodynamic efficiency is defined based on figure of merit (FM) and lift-to-drag responses developed for hover and forward flight, respectively. Design/methodology/approach The approach is to couple a general flight dynamic simulation code, previously validated in the time domain, with design of experiment (DOE) required for the response surface development. DOE includes I-optimality criteria to preselect the data and improve data acquisition process. Desirability approach is also implemented for a better understanding of the optimum rotor blade planform in both hover and forward flight. Findings The resulting system provides a systematic manner to examine the rotor blade design variables and their interactions, thus reducing the time and cost of designing rotor blades. The obtained results show that the blade taper ratio of 0.3, the point of taper initiation of about 0.64 R within a SC1095R8 airfoil satisfy the maximum FM of 0.73 and the maximum lift-to-drag ratio of about 5.5 in hover and forward flight. Practical implications The work shows the practical possibility to implement the proposed optimization process that can be used for the advanced rotor blade design. Originality/value The work presents the rapid and reliable optimization process efficiently used for designing advanced rotor blades in hover and forward flight.

Publisher

Emerald

Subject

Aerospace Engineering

Reference39 articles.

1. Application of optimization methods to rotor design problems;Vertica,1983

2. Quarter scale testing of an advanced rotor system for the UH-1 helicopter;American Helicopter Society 37th Annual National Forum, New Orleans,1981

3. The aerodynamic influences of rotor blade taper, twist, airfoils and solidity on hover and forward flight performance,1981

4. Recent applications of design optimization to rotorcraft – a survey;Journal of Aircraft,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3