Application of virtual flight test framework with derivative design optimization

Author:

Park Hyeong-Uk,Chung Joon,Kwon Ohyun

Abstract

Purpose The purpose of this paper is a development of a virtual flight test framework with derivative design optimization. Aircraft manufactures and engineers have been putting significant effort into the design process to lower the cost of development and time to a minimum. In terms of flight tests and aircraft certification, implementing simulation and virtual test techniques may be a sufficient method in achieving these goals. In addition to simulation and virtual test, a derivative design can be implemented to satisfy different market demands and technical changes while reducing development cost and time. Design/methodology/approach In this paper, a derivative design optimization was applied to Expedition 350, a small piston engine powered aircraft developed by Found Aircraft in Canada. A derivative that changes the manned aircraft to an Unmanned Aerial Vehicle for payload delivery was considered. An optimum configuration was obtained while enhancing the endurance of the UAV. The multidisciplinary design optimization module of the framework represents the optimized configuration and additional parameters for the simulator. These values were implemented in the simulator and generated the aircraft model for simulation. Two aircraft models were generated for the flight test. Findings The optimization process delivered the UAV derivative of Expedition E350, and it had increased endurance up to 21.7 hours. The original and optimized models were implemented into virtual flight test. The cruise performance exhibited less than 10 per cent error on cruise performance between the original model and Pilots Operating Handbook (POH). The dynamic stability of original and optimized models was tested by checking Phugoid, short period, Dutch roll and spiral roll modes. Both models exhibited stable dynamic stability characteristics. Practical implications The original Expedition 350 was generated to verify the accuracy of the simulation data by comparing its result with actual flight test data. The optimized model was generated to evaluate the optimization results. Ultimately, the virtual flight test framework with an aircraft derivative design was proposed in this research. The additional module for derivative design optimization was developed and its results were implemented to commercial off-the-shelf simulators. Originality/value This paper proposed the application of UAV derivative design optimization for the virtual flight test framework. The methodology included the optimization of UAV derivative utilizing MDO and virtual flight testing of an optimized result with a flight simulator.

Publisher

Emerald

Subject

Aerospace Engineering

Reference50 articles.

1. Aurora Flight Sciences (2017), available at: www.aurora.aero/centaur/ (accessed 12 June 2017).

2. Multidisciplinary design optimization of aerospace systems,2005

3. The history of the microprocessor;Bell Labs Technical Journal,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3