Aircraft positioning using PPP method in GLONASS system

Author:

Krasuski Kamil,C´wiklak Janusz,Jafernik Henryk

Abstract

Purpose The purpose of the study is focused on implementation of Global Navigation Satellite System (GLONASS) technique in civil aviation for recovery of aircraft position using Precise Point Positioning (PPP) method in kinematic mode. Design/methodology/approach The aircraft coordinates of Cessna 172 plane in XYZ geocentric frame were obtained based on GLONASS code and phase observations for PPP method. The numerical computations were executed in post-processing mode in the RTKPOST module in RTKLIB program. The mathematical scheme of equation observation of PPP method was solved using Kalman filter in stochastic processing. Findings In paper, the average accuracy of aircraft position is about 0.308 m for X coordinate, 0.274 m for Y coordinate, 0.379 m for Z coordinate. In case of the mean radial spherical error (MRSE) parameter, the average value equals to 0.562 m. In paper, the accuracy of aircraft position in BLh geodesic frame were also showed and described. Research limitations/implications The PPP method can be applied for determination the coordinates of receiver, receiver clock bias, Zenith Wet Delay (ZWD) parameter and ambiguity term for each satellite. Practical implications The PPP method is a new technique for aircraft positioning in air navigation. The PPP method can be also used in receiver autonomous integrity monitoring (RAIM) module in aircraft-based augmentation system (ABAS) system in air transport. The typical accuracy for recovery the aircraft position is about cm ÷ dm level using the PPP method. Social implications The paper is destined for people who work in area of geodesy, navigation, aviation and air transport. Originality/value The work presents the original research results of implementation the GLONASS satellite technique for recovery the aircraft position in civil aviation. Currently, the presented research PPP method is used in precise positioning of aircraft in air navigation based on global positioning system and GLONASS solutions.

Publisher

Emerald

Subject

Aerospace Engineering

Reference28 articles.

1. Abdel-Salam, M.A. (2005), “Precise point positioning using un-difference code and carrier phase observations”, PhD thesis, UCGE Reports no. 20229, University of Calgary, pp. 48-77.

2. Pilot evaluation of integrating GLONASS, Galileo and BeiDou with GPS in ARAIM;Artificial Satellites,2016

3. Preliminary results of DGPS/DGLONASS aircraft positioning in flight approaches and landing;Annual of Navigation,1999

4. GPS/GLONASS flight test, lab test and coverage analysis tests,1990

5. Combined use of GPS and GLONASS a new era in marine navigation and positioning,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3