Abstract
PurposeThe purpose of this paper is to propose radiating system by avoiding electromagnetic interference in unwanted directions and to radiate the energy in the required direction with an optimization technique.Design/methodology/approachPractically, multiple, incompatible variables require concurrent boost on a synthesis of systematic antenna assemblage. The authors have worked out the main statistic penalty function to ensure all the restrictions. Here, MBPSO (Modified Binary Particle Swarm Optimization) is developed and introduced thin planar synthesis restriction. The sigmoid function is used to update the particle position. Different analytical demonstrations have been carried out, and the exhibited methods are predominant than the algorithms.FindingsA 20 × 10 planar antenna array is synthesized using modified BPSO. The authors have suppressed the PSLL in two principal planes and as well as in the entire f plane. Numerical results state that MBPSO outperforms the other binary BPSO, BCSO, ACO, RGA, GA optimization techniques. MBPSO achieved a −51.84 dB PSLL level, whereas BPSO achieved −48.57 dB with the same 50% thinning.Originality/valuePlanar array antenna formation is one of the most complex syntheses because the array gets filled with more antenna elements. The machine-like complication and implementation of such an antenna arrangement with a broad opening would be expensive. It is not easy to control the required radiation patterns shape by using a uniform feeding network. To get better flexibility for sustaining the sidelobe levelheaded along with consistent amplitude distribution. So as far as prominence has been given to the evolutionary algorithm, find an ideal solution for objective array combinational problems.
Reference24 articles.
1. Synthesis of sparse planar arrays using modified real genetic algorithm;IEEE Transactions on Antennas and Propagation,2007
2. Computational intelligence based on the behavior of cats;International Journal of Innovative Computing, Information and Control,2007
3. A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays;IEEE Antennas and Wireless Propagation Letters,2009
4. Thinned arrays using genetic algorithms;IEEE Transactions on Antennas and Propagation,1994
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献