Is there room for another hedonic model?

Author:

Cajias Marcelo

Abstract

Purpose This paper aims to explore the in-sample explanatory and out-of-sample forecasting accuracy of the generalized additive model for location, scale and shape (GAMLSS) model in contrast to the GAM method in Munich’s residential market. Design/methodology/approach The paper explores the in-sample explanatory results via comparison of coefficients and a graphical analysis of non-linear effects. The out-of-sample forecasting accuracy focusses on 50 loops of three models excluding 10 per cent of the observations randomly. Afterwards, it obtains the predicted functional forms and predicts the remaining 10 per cent. The forecasting performance is measured via error variance, root mean squared error, mean absolute error and the mean percentage error. Findings The results show that the complexity of asking rents in Munich is more accurately captured by the GAMLSS approach than the GAM as shown by an outperformance in the in-sample explanatory accuracy. The results further show that the theoretical and empirical complexities do pay off in view of the increased out-of-sample forecasting power of the GAMLSS approach. Research limitations/implications The computational requirements necessary to estimate GAMLSS models in terms of number of cores and RAM are high and might constitute one of the limiting factors for (institutional) researchers. Moreover, large and detailed knowledge on statistical inference and programming is necessary. Practical implications The usage of the GAMLSS approach would lead policymakers to better understand the local factors affecting rents. Institutional researchers, instead, would clearly aim at calibrating the forecasting accuracy of the model to better forecast rents in investment strategies. Finally, future researchers are encouraged to exploit the large potential of the GAMLSS framework and its modelling flexibility. Originality/value The GAMLSS approach is widely recognised and used by international institutions such as the World Health Organisation, the International Monetary Fund and the European Commission. This is the first study to the best of the author’s knowledge to assess the properties of the GAMLSS approach in applied real estate research from a statistical asymptotic perspective by using a unique data basis with more than 38,000 observations.

Publisher

Emerald

Subject

Economics and Econometrics,Finance,Accounting

Reference33 articles.

1. The impact of historic district designation on the prices of single-family homes in the oldest city in the United States, St. Augustine, Florida;Journal of Property Research,2016

2. Spatial externalities, spatial multipliers, and spatial econometrics;International Regional Science Review,2003

3. Spatial dependence, housing submarkets, and house price prediction;The Journal of Real Estate Finance and Economics,2007

4. Predicting house prices with spatial dependence. Impact of alternatives submarkets definitions;Journal of Real Estate Research,2010

5. Additive hedonic regression models with spatial scaling factors: an application for rents in Vienna;The Journal of Real Estate Finance and Economics,2010

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3