Human motion analysis from UAV video

Author:

Perera Asanka G.ORCID,Law Yee Wei,Al-Naji Ali,Chahl Javaan

Abstract

Purpose The purpose of this paper is to present a preliminary solution to address the problem of estimating human pose and trajectory by an aerial robot with a monocular camera in near real time. Design/methodology/approach The distinguishing feature of the solution is a dynamic classifier selection architecture. Each video frame is corrected for perspective using projective transformation. Then, a silhouette is extracted as a Histogram of Oriented Gradients (HOG). The HOG is then classified using a dynamic classifier. A class is defined as a pose-viewpoint pair, and a total of 64 classes are defined to represent a forward walking and turning gait sequence. The dynamic classifier consists of a Support Vector Machine (SVM) classifier C64 that recognizes all 64 classes, and 64 SVM classifiers that recognize four classes each – these four classes are chosen based on the temporal relationship between them, dictated by the gait sequence. Findings The solution provides three main advantages: first, classification is efficient due to dynamic selection (4-class vs 64-class classification). Second, classification errors are confined to neighbors of the true viewpoints. This means a wrongly estimated viewpoint is at most an adjacent viewpoint of the true viewpoint, enabling fast recovery from incorrect estimations. Third, the robust temporal relationship between poses is used to resolve the left-right ambiguities of human silhouettes. Originality/value Experiments conducted on both fronto-parallel videos and aerial videos confirm that the solution can achieve accurate pose and trajectory estimation for these different kinds of videos. For example, the “walking on an 8-shaped path” data set (1,652 frames) can achieve the following estimation accuracies: 85 percent for viewpoints and 98.14 percent for poses.

Publisher

Emerald

Reference44 articles.

1. Recovering 3d human pose from monocular images;IEEE Transactions on Pattern Analysis and Machine Intelligence,2006

2. Reducing multiclass to binary: a unifying approach for margin classifiers;Journal of Machine Learning Research,2000

3. Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle;BioMedical Engineering OnLine,2017

4. Vision based victim detection from unmanned aerial vehicles,2010

5. A hardware-friendly Support Vector Machine for embedded automotive applications,2007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution from Handcrafted to Learned Representation Methods for Vision-Based Activity Recognition;Advances in Intelligent Systems and Computing;2023

2. Video Magnification Techniques: Medical Applications and Comparison of Methods;IOP Conference Series: Materials Science and Engineering;2021-06-01

3. Life Signs Detector Using a Drone in Disaster Zones;Remote Sensing;2019-10-21

4. Human Detection and Motion Analysis from a Quadrotor UAV;IOP Conference Series: Materials Science and Engineering;2018-09-26

5. Human Pose and Path Estimation from Aerial Video Using Dynamic Classifier Selection;Cognitive Computation;2018-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3